A KPCA texture feature model for efficient segmentation of RADARSAT-2 SAR sea ice imagery
نویسندگان
چکیده
Sea ice information obtained from synthetic aperture radar (SAR) images is crucial for ensuring safe marine navigation and supporting climate change studies in polar regions. We propose a kernel principal component analysis (KPCA) local texture feature model for efficient sea ice segmentation. The proposed KPCA texture feature model is significant for several reasons. First, it takes into account the multiplicative nature of SAR speckle noise. The resulting KPCA features therefore assume independent and identically distributed (i.i.d.) Gaussian-like noise, which satisfies the assumptions inherent in classical statistical models such as the k-means algorithm. Second, the KPCA features are compact and statistically independent and therefore capable of reducing data redundancy. Third, the KPCA texture features are discriminative. Finally, the extraction of KPCA features requires less computation. Based on the KPCA model, a segmentation scheme is implemented in four steps. First, local patch-based texture descriptors are extracted from the image. Second, KPCA is performed on the patch-based texture descriptors to obtain compact and discriminative texture features with Gaussian-like noise characteristics. Third, the k-means algorithm is performed on extracted KPCA features to segment the image. Finally, a neighbourhood-based majority voting scheme is employed to determine the final label of each pixel. We compared the proposed method with several other popular sea ice segmentation approaches. The results demonstrated that our method is robust to speckle noise level, is accurate and fast and may thus better support the operational segmentation of sea ice in SAR imagery.
منابع مشابه
Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery
The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual ...
متن کاملFeature extraction of dual-pol SAR imagery for sea ice image segmentation
Dual-polarization synthetic aperture radar (SAR) image data, such as that available from RADARSAT-2, provides additional information for discriminating sea ice types compared to single-polarization data. A thorough investigation of published feature extraction and fusion techniques for making optimal use of this additional information for unsupervised sea ice image segmentation has been perform...
متن کاملPreserving Texture Boundaries for SAR Sea Ice Segmentation
Texture analysis has been used extensively in the computer–assisted interpretation of SAR sea ice imagery. Provision of maps which distinguish relevant ice types is significant for monitoring global warming and ship navigation. Due to the abundance of SAR imagery available, there exists a need to develop an automated approach for SAR sea ice interpretation. Grey level co-occurrence probability ...
متن کاملTexture Segmentation of SAR Sea Ice Imagery
Texture Discrimination of SAR Sea Ice Imagery The di erentiation of textures is a critical aspect of SAR sea ice image segmen tation Provision of images that identify pertinent ice types is important for the operational ice breakers ships oil platforms and scienti c ie global warming monitoring communities Although a human is readily able to visually segment any textured image no unsupervised m...
متن کاملThe Synergy of Ers-2 Sar and Radarsat Sar Imagery of Sea-ice from the Kara Sea
This work investigates the use of multi-source images to classify sea-ice conditions in the South-western Kara Sea, and in doing so simulate the alternating mode which will be available from the ASAR sensor on board Envisat. The unique data set comprises SAR images obtained from both ERS-2 and Radarsat platforms over a 12 hour-period on 23 March 1997, which also provides a high temporal resolut...
متن کامل